1. (24%) Determine whether the series converges absolutely or conditionally, or diverges. In addition, please indicate the test you use.
(a) $\sum_{n=1}^{\infty}(-1)^{n}\left(1-\cos \left(\frac{1}{n}\right)\right)$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(n!)^{n}}{\left(n^{n}\right)^{2}}$
(c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n^{3}+1}+\sqrt{n^{3}}}$
(d) $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{1}{n \ln (\ln n)}$

Ans:

(a) $\sum_{n=1}^{\infty}(-1)^{n}\left(1-\cos \left(\frac{1}{n}\right)\right)=\sum_{n=1}^{\infty}(-1)^{n}\left(2 \sin ^{2}\left(\frac{1}{2 n}\right)\right)$

Considering $\sum_{n=1}^{\infty}\left(2 \sin ^{2}\left(\frac{1}{2 n}\right)\right)$ since $\lim _{n \rightarrow \infty} 2\left(\frac{\sin \left(\frac{1}{2 n}\right)}{\frac{1}{2 n}}\right)^{2}=2$ and $\sum_{n=1}^{\infty} \frac{1}{4 n^{2}}$ is converge ($\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a p -series with $\mathrm{p}>1$ which is converge) by direct comparison test it is convergent. So the original sequence is absolute convergent.
(b) $\lim _{n \rightarrow \infty} \sqrt[n]{\left|(-1)^{n} \frac{(n!)^{n}}{\left(n^{n}\right)^{2}}\right|}=\lim _{n \rightarrow \infty} \frac{n!}{n^{2}}=\infty>1$

Therefore, by the root test, the series is diverging.
(c) Since $\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n^{3}}}}{\frac{1}{\sqrt{n^{3}+1}+\sqrt{n^{3}}}}=2$ and $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}}}$ is a p-series with $\mathrm{p}>1$ which is converge. By limit comparison test, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+1}+\sqrt{n^{3}}}$ is also converge. So $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n^{3}+1}+\sqrt{n^{3}}}$ is absolute converge.
(d) $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{1}{n \ln (\ln n)}$ is converge by the alternating series test, since $\lim _{n \rightarrow \infty} \frac{1}{n \ln (\ln n)}=0$ and $\frac{1}{(n+1) \ln (\ln (n+1))}<\frac{1}{n \ln (\ln n)}$ for $\mathrm{n}>2$.
$\sum_{n=2}^{\infty} \frac{1}{n \ln (\ln n)}$ is diverge by direct comparison test since $\frac{1}{n \ln (\ln n)}>\frac{1}{n \ln n}$ and note that $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ is diverge (Let $f(x)=\frac{1}{x \ln (x)}, \int_{2}^{\infty} \frac{1}{x \ln (x)} d x=\left.\ln \ln (x)\right|_{2} ^{\infty}=\infty$, so by integral test the corresponding series is diverge). So the original series is conditionally converging.
2. (16%) Find the interval of convergence of the power series (Be sure to check the for the convergence at the endpoints of the intervals)
(a) $\sum_{n=1}^{\infty} x^{n} \ln \left(\frac{n+1}{n}\right)$
(b) $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{(-2)^{n} \sqrt{n}}$

Ans:
(a) $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1} \ln \left(\frac{n+2}{n+1}\right)}{x^{n} \ln \left(\frac{n+1}{n}\right)}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1} \ln \left(\frac{1+\frac{2}{n}}{1+\frac{1}{n}}\right)}{x^{n} \ln \left(\frac{1+\frac{1}{n}}{1}\right)}\right|=|x|$ By the ratio test, the series converges for $|x|<1$

When $\mathrm{x}=1: \sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n}\right)$ is diverge by the n -th term test for divergence since
$\sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n}\right)=\sum_{n=1}^{\infty} \ln (n+1)-\ln (n)=\lim _{n \rightarrow \infty} \ln (n+1)=\infty$
When $\mathrm{x}=-1$: $\sum_{n=1}^{\infty}(-1)^{n} \ln \left(\frac{n+1}{n}\right)$ is converge by the alternating series test, since
$\lim _{n \rightarrow \infty} \ln \left(\frac{n+1}{n}\right)=0$ and $\ln \left(\frac{n+2}{n+1}\right)<\ln \left(\frac{n+1}{n}\right)$ for $\mathrm{n}>1$.
So the interval of convergence is $[-1,1)$
(b) $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(x-1)^{n+1}}{(-2)^{n+1} \sqrt{n+1}}}{\frac{(x-1)^{n}}{(-2)^{n} \sqrt{n}}}\right|=\left|\frac{x-1}{-2}\right| \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+1}}=\left|\frac{x-1}{-2}\right|<1 \rightarrow|\mathrm{x}-1|<2$

When $\mathrm{x}=3: \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ is by converge by the alternating series test, since
$\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$ and $\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}$ for $\mathrm{n}>1$.
When $\mathrm{x}=-1: \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a p -series with $\mathrm{p} \leq 1$ which is diverge.
So the interval of convergence is $(-1,3]$
3. (12%) Use a power series to approximate $\int_{0}^{1} \cos \left(x^{2}\right) d x$ with an error of less than 0.001

Ans: $\int_{0}^{1} \cos \left(x^{2}\right) d x=\int_{0}^{1}\left[\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n}}{(2 n)!}\right] d x=\left[\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+1}}{(4 n+1)(2 n)!}\right]_{0}^{1}=$
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(4 n+1)(2 n)!}$

It is an alternating series, since $\frac{1}{(4 * 3+1)(2 * 3)!}<0.001$ therefore we know that $\int_{0}^{1} \cos \left(x^{2}\right) d x \approx \sum_{n=0}^{2} \frac{(-1)^{n}}{(4 n+1)(2 n)!}=1-\frac{1}{10}+\frac{1}{216} \approx \frac{977}{1080}$
4. (18%) Evaluate the following expression (Try to use the Basic series of Taylor series and notice that the power series is a continuous function)
(a) $1+\frac{3}{1!}+\frac{9}{2!}+\frac{27}{3!}+\frac{81}{4!}+\cdots$
(b) $\quad \sum_{n=1}^{\infty} \frac{n}{(n-1)!}$
(c) $\lim _{x \rightarrow 0} \frac{\sin (\mathrm{x}) \arctan (x)-x^{2}+\frac{x^{4}}{2}}{x^{6}}$

Ans:

(a) $1+\frac{3}{1!}+\frac{9}{2!}+\frac{27}{3!}+\frac{81}{4!}+\cdots=\sum_{n=0}^{\infty} \frac{3^{n}}{n!}=e^{3}$
(b) Since $e^{x}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}$
$x e^{x}=\sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^{n} \rightarrow x e^{x}+e^{x}=\sum_{n=1}^{\infty} \frac{n}{(n-1)!} x^{n-1} \rightarrow \sum_{n=1}^{\infty} \frac{n}{(n-1)!}=$
$2 e$ (Substitute $x=1$)
(c) $\lim _{x \rightarrow 0} \frac{\sin (\mathrm{x}) \arctan (x)-x^{2}+\frac{x^{4}}{2}}{x^{6}}=\lim _{x \rightarrow 0^{+}} \frac{\left(x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\cdots\right)\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots\right)-x^{2}+\frac{x^{4}}{2}}{x^{6}}=$ $\lim _{x \rightarrow 0} \frac{\left(x^{2}-\frac{x^{4}}{2}+\frac{19 x^{6}}{72}-\cdots\right)-x^{2}+\frac{x^{4}}{2}}{x^{6}}=\frac{19}{72}$
5. (12\%) Derive the Maclaurin series of $f(x)=\arccos (x)$ and $g(x)=$ $\arccos \left(2 x^{3}\right)$. In addition, calculate $g^{(93)}(0)$

Ans:

$$
\left.\begin{array}{c}
\frac{d}{d x} \arccos (\mathrm{x})=\frac{-1}{\sqrt{1-x^{2}}}=-\sum_{n=0}^{\infty}\left(\frac{-1}{2}\right)\left(-x^{2}\right)^{n} \\
\arccos (\mathrm{x})=\sum_{n=0}^{\infty}\left(\frac{-1}{2}\right. \\
n
\end{array}\right)(-1)^{n+1} \frac{x^{2 n+1}}{2 n+1}+C
$$

Substitute 0 into the equation we have $C=\frac{\pi}{2}$. Therefore,

$$
\begin{gathered}
\arccos (\mathrm{x})=\frac{\pi}{2}+\sum_{n=0}^{\infty}\left(\frac{-1}{2}\right)(-1)^{n+1} \frac{x^{2 n+1}}{2 n+1} \\
\arccos \left(2 x^{3}\right)=\frac{\pi}{2}+\sum_{n=0}^{\infty}\left(\frac{-1}{2}\right)(-1)^{n+1} \frac{2^{2 n+1} x^{6 n+3}}{2 n+1}
\end{gathered}
$$

The definition of Maclaurin series of $g(x)$ is $\sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!} x^{k}$
Comparing the coefficient of $x^{93}(n=15$ since $15 * 6+3=93)$
We have $\frac{g^{(93)}(0)}{93!}=\binom{\frac{-1}{2}}{15}(-1)^{15+1} \frac{2^{2 * 15+1}}{2 * 15+1}=\binom{\frac{-1}{2}}{15} \frac{2^{31}}{31}$

$$
g^{(93)}(0)=\binom{\frac{-1}{2}}{15} \frac{2^{31}}{31} 93!
$$

6. (10%) Find the area of the shaded region bounded by the curves $r=a(1+$ $\cos (\theta))$ and $r=a \sin (\theta)$

Ans:

$$
\begin{gathered}
\mathrm{A}=\frac{\pi a^{2}}{8}+\frac{1}{2} \int_{\frac{\pi}{2}}^{\pi}(a(1+\cos \theta))^{2} d \theta=\frac{\pi a^{2}}{8}+\frac{a^{2}}{2} \int_{\frac{\pi}{2}}^{\pi} \frac{3}{2}+2 \cos \theta+\frac{\cos (2 \theta)}{2} d \theta \\
=\frac{\pi a^{2}}{8}+\frac{a^{2}}{2}\left[\frac{3}{2} \theta+2 \sin \theta+\frac{\sin (2 \theta)}{4}\right] \frac{\pi}{2}=\frac{a^{2}}{2}[\pi-2]
\end{gathered}
$$

7. (10%) Find the area of the surface formed by revolving the polar graph $r=e^{a \theta}$ about the $\theta=\frac{\pi}{2}$ over the interval $0 \leq \theta \leq \frac{\pi}{2}$

Ans:

$$
\begin{gathered}
\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}=\sqrt{\left(e^{a \theta}\right)^{2}+\left(a e^{a \theta}\right)^{2}} \\
S=2 \pi \int_{0}^{2 \pi} e^{a \theta} \cos (\theta) \sqrt{\left(e^{a \theta}\right)^{2}+\left(a e^{a \theta}\right)^{2}} d \theta \\
= \\
=2 \pi \sqrt{1+a^{2}} \int_{0}^{\frac{\pi}{2}} e^{2 a \theta} \cos (\theta) d \theta \text { (Integration by parts) } \\
=2 \pi \sqrt{1+a^{2}}\left[\frac{e^{2 a \theta}}{4 a^{2}+1}(2 a \cos \theta+\sin \theta)\right]_{0}^{\frac{\pi}{2}} \\
=
\end{gathered}
$$

Note that

$$
\int e^{2 a \theta} \cos (\theta) d \theta=\frac{\cos (\theta)}{2 a} e^{2 a \theta}+\frac{1}{2 a} \int e^{2 a \theta} \sin (\theta) d \theta
$$

(Let $\mathrm{u}=\cos (\theta), \mathrm{dv}=e^{2 a \theta} d \theta \rightarrow d u=-\sin (\theta), v=\frac{1}{2 a} e^{2 a \theta}$)

$$
\int e^{2 a \theta} \sin (\theta) d \theta=\frac{\sin (\theta)}{2 a} e^{2 a \theta}-\frac{1}{2 a} \int e^{2 a \theta} \cos (\theta) d \theta
$$

$\left(\right.$ Let $\left.\mathrm{u}=\sin (\theta), \mathrm{dv}=e^{2 a \theta} d \theta \rightarrow d u=\cos (\theta), v=\frac{1}{2 a} e^{2 a \theta}\right)$

$$
\int e^{2 a \theta} \cos (\theta) d \theta=\frac{e^{2 a \theta}}{4 a^{2}+1}(2 a \cos \theta+\sin \theta)
$$

8. (8%) Determine whether $\int_{0}^{1} \frac{\sin (x)}{x} d x$ is converge or diverge.

Ans:

$$
\begin{aligned}
\int_{0}^{1} \frac{\sin (x)}{x} d x & =\int_{0}^{1} \frac{x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots}{x} d x=\int_{0}^{1} 1-\frac{1}{3!} x^{2}+\frac{1}{5!} x^{4}-\cdots d x \\
& =\left[x-\frac{x^{3}}{3 \times 3!}+\frac{x^{5}}{5 \times 5!}-\cdots\right] \begin{array}{l}
1 \\
0
\end{array}=1-\frac{1}{3 \times 3!}+\frac{1}{5 \times 5!} .
\end{aligned}
$$

$=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1) \times(2 n-1)!}$ is converge by the alternating series test, since $\lim _{n \rightarrow \infty} \frac{1}{(2 n-1) \times(2 n-1)!}=0$ and $\frac{1}{(2 n+1)(2 n+1)!}<\frac{1}{(2 n-1)(2 n-1)!}$ for $\mathrm{n}>1$.

