- 1. (24%) Determine whether the series converges absolutely or conditionally, or diverges. In addition, please indicate the test you use.
 - (a) $\sum_{n=1}^{\infty} (-1)^n (1 \cos(\frac{1}{n}))$
 - (b) $\sum_{n=1}^{\infty} (-1)^n \frac{(n!)^n}{(n^n)^2}$
 - (c) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n^3 + 1} + \sqrt{n^3}}$

(d)
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{1}{n \ln(\ln n)}$$

Ans:

(a)
$$\sum_{n=1}^{\infty} (-1)^n (1 - \cos(\frac{1}{n})) = \sum_{n=1}^{\infty} (-1)^n (2\sin^2(\frac{1}{2n}))$$

Considering $\sum_{n=1}^{\infty} (2\sin^2(\frac{1}{2n}))$ since $\lim_{n \to \infty} 2\left(\frac{\sin(\frac{1}{2n})}{\frac{1}{2n}}\right)^2 = 2$ and $\sum_{n=1}^{\infty} \frac{1}{4n^2}$ is converge $(\sum_{n=1}^{\infty} \frac{1}{n^2})$ is a p-series with $p > 1$ which is converge) by direct comparison test it is convergent. So the original sequence is absolute convergent.

(b)
$$\lim_{n \to \infty} \sqrt[n]{|(-1)^n \frac{(n!)^n}{(n^n)^2}|} = \lim_{n \to \infty} \frac{n!}{n^2} = \infty > 1$$

Therefore, by the root test, the series is diverging.

(c) Since
$$\lim_{n \to \infty} \frac{\frac{1}{\sqrt{n^3}}}{\frac{1}{\sqrt{n^3+1}+\sqrt{n^3}}} = 2$$
 and $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3}}$ is a p-series with $p > 1$ which is

converge. By limit comparison test, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+1} + \sqrt{n^3}}$ is also converge. So

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n^3 + 1} + \sqrt{n^3}}$$
 is absolute converge.

(d) $\sum_{n=2}^{\infty} (-1)^{n+1} \frac{1}{n \ln(\ln n)}$ is converge by the alternating series test, since

$$\lim_{n \to \infty} \frac{1}{n \ln(\ln n)} = 0 \text{ and } \frac{1}{(n+1)\ln(\ln(n+1))} < \frac{1}{n \ln(\ln n)} \text{ for } n > 2.$$

 $\sum_{n=2}^{\infty} \frac{1}{n \ln(\ln n)}$ is diverge by direct comparison test since $\frac{1}{n \ln(\ln n)} > \frac{1}{n \ln n}$ and note that $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ is diverge (Let $f(x) = \frac{1}{x \ln(x)}, \int_{2}^{\infty} \frac{1}{x \ln(x)} dx = \ln \ln(x) \Big|_{2}^{\infty} = \infty$, so by integral test the corresponding series is diverge). So the original series is

conditionally converging.

- 2. (16%) Find the interval of convergence of the power series (Be sure to check the for the convergence at the endpoints of the intervals)
- (a) $\sum_{n=1}^{\infty} x^n \ln(\frac{n+1}{n})$
- (b) $\sum_{n=1}^{\infty} \frac{(x-1)^n}{(-2)^n \sqrt{n}}$

Ans:

(a)
$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1} \ln(\frac{n+2}{n+1})}{x^n \ln(\frac{n+1}{n})} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1} \ln(\frac{1+\frac{2}{n}}{1+\frac{1}{n}})}{x^n \ln(\frac{1+\frac{1}{n}}{1})} \right| = |x|$$
 By the ratio test, the

series converges for |x| < 1

When x = 1: $\sum_{n=1}^{\infty} \ln(\frac{n+1}{n})$ is diverge by the n-th term test for divergence since $\sum_{n=1}^{\infty} \ln(\frac{n+1}{n}) = \sum_{n=1}^{\infty} \ln(n+1) - \ln(n) = \lim_{n \to \infty} \ln(n+1) = \infty$

When x = -1: $\sum_{n=1}^{\infty} (-1)^n \ln(\frac{n+1}{n})$ is converge by the alternating series test, since

$$\lim_{n \to \infty} \ln(\frac{n+1}{n}) = 0 \text{ and } \ln(\frac{n+2}{n+1}) < \ln(\frac{n+1}{n}) \text{ for } n > 1$$

So the interval of convergence is [-1,1)

(b)
$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(x-1)^{n+1}}{(-2)^{n+1}\sqrt{n+1}}}{\frac{(x-1)^n}{(-2)^n\sqrt{n}}} \right| = \left| \frac{x-1}{-2} \right| \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1}} = \left| \frac{x-1}{-2} \right| < 1 \to |x-1| < 2$$

When x = 3: $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ is by converge by the alternating series test, since

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0 \text{ and } \frac{1}{\sqrt{n+1}} < \frac{1}{\sqrt{n}} \text{ for } n > 1.$$

When x = -1: $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a p-series with $p \le 1$ which is diverge. So the interval of convergence is (-1,3]

3. (12%) Use a power series to approximate $\int_0^1 \cos(x^2) dx$ with an error of less than 0.001

Ans:
$$\int_0^1 \cos(x^2) dx = \int_0^1 \left[\sum_{n=0}^\infty \frac{(-1)^n x^{4n}}{(2n)!} \right] dx = \left[\sum_{n=0}^\infty \frac{(-1)^n x^{4n+1}}{(4n+1)(2n)!} \right]_0^1 = \sum_{n=0}^\infty \frac{(-1)^n}{(4n+1)(2n)!}$$

It is an alternating series, since $\frac{1}{(4*3+1)(2*3)!} < 0.001$ therefore we know that

$$\int_0^1 \cos(x^2) dx \approx \sum_{n=0}^2 \frac{(-1)^n}{(4n+1)(2n)!} = 1 - \frac{1}{10} + \frac{1}{216} \approx \frac{977}{1080}$$

- 4. (18%) Evaluate the following expression (Try to use the Basic series of Taylor series and notice that the power series is a continuous function)
 - (a) $1 + \frac{3}{1!} + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} + \cdots$

(b)
$$\sum_{n=1}^{\infty} \frac{n}{(n-1)!}$$

(c) $\lim_{x \to 0} \frac{\sin(x) \arctan(x) - x^2 + \frac{x^4}{2}}{x^6}$

Ans:

(a)
$$1 + \frac{3}{1!} + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} + \dots = \sum_{n=0}^{\infty} \frac{3^n}{n!} = e^3$$

(b) Since
$$e^x = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}$$

 $xe^x = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^n \to xe^x + e^x = \sum_{n=1}^{\infty} \frac{n}{(n-1)!} x^{n-1} \to \sum_{n=1}^{\infty} \frac{n}{(n-1)!} =$
2e (Substitute $x = 1$)

(c)
$$\lim_{x \to 0} \frac{\sin(x)\arctan(x) - x^2 + \frac{x^4}{2}}{x^6} = \lim_{x \to 0^+} \frac{(x - \frac{x^3}{6} + \frac{x^5}{120} - \dots)(x - \frac{x^3}{3} + \frac{x^5}{5} - \dots) - x^2 + \frac{x^4}{2}}{x^6} = \lim_{x \to 0^+} \frac{(x^2 - \frac{x^4}{2} + \frac{19x^6}{72} - \dots) - x^2 + \frac{x^4}{2}}{x^6} = \frac{19}{72}$$

5. (12%) Derive the Maclaurin series of $f(x) = \arccos(x)$ and $g(x) = \arccos(2x^3)$. In addition, calculate $g^{(93)}(0)$

Ans:

$$\frac{d}{dx}\arccos(x) = \frac{-1}{\sqrt{1-x^2}} = -\sum_{n=0}^{\infty} \left(\frac{-1}{2}\right) (-x^2)^n$$
$$\arccos(x) = \sum_{n=0}^{\infty} \left(\frac{-1}{2}\right) (-1)^{n+1} \frac{x^{2n+1}}{2n+1} + C$$

Substitute 0 into the equation we have $C = \frac{\pi}{2}$. Therefore,

$$\arccos(\mathbf{x}) = \frac{\pi}{2} + \sum_{n=0}^{\infty} \left(\frac{-1}{2n}\right) (-1)^{n+1} \frac{x^{2n+1}}{2n+1}$$

$$\arccos(2x^3) = \frac{\pi}{2} + \sum_{n=0}^{\infty} \left(\frac{-1}{\frac{2}{n}}\right) (-1)^{n+1} \frac{2^{2n+1} x^{6n+3}}{2n+1}$$

The definition of Maclaurin series of g(x) is $\sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!} x^k$ Comparing the coefficient of x^{93} (n = 15 since 15 * 6 + 3 = 93) We have $\frac{g^{(93)}(0)}{93!} = {\binom{-1}{2}}{(15)} (-1)^{15+1} \frac{2^{2*15+1}}{2*15+1} = {\binom{-1}{2}}{15} \frac{2^{31}}{31}$ $g^{(93)}(0) = {\binom{-1}{2}}{15} \frac{2^{31}}{31} 93!$

6. (10%) Find the area of the shaded region bounded by the curves $r = a(1 + co s(\theta))$ and $r = asin(\theta)$

Ans:

$$A = \frac{\pi a^2}{8} + \frac{1}{2} \int_{\frac{\pi}{2}}^{\pi} (a(1 + \cos\theta))^2 d\theta = \frac{\pi a^2}{8} + \frac{a^2}{2} \int_{\frac{\pi}{2}}^{\pi} \frac{3}{2} + 2\cos\theta + \frac{\cos(2\theta)}{2} d\theta$$
$$= \frac{\pi a^2}{8} + \frac{a^2}{2} \Big[\frac{3}{2} \theta + 2\sin\theta + \frac{\sin(2\theta)}{4} \Big] \frac{\pi}{2} = \frac{a^2}{2} [\pi - 2]$$

7. (10%) Find the area of the surface formed by revolving the polar graph $r = e^{a\theta}$ about the $\theta = \frac{\pi}{2}$ over the interval $0 \le \theta \le \frac{\pi}{2}$ Ans:

$$\begin{aligned} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} &= \sqrt{(e^{a\theta})^2 + (ae^{a\theta})^2} \\ S &= 2\pi \int_0^{2\pi} e^{a\theta} \cos(\theta) \sqrt{(e^{a\theta})^2 + (ae^{a\theta})^2} d\theta \\ &= 2\pi \sqrt{1 + a^2} \int_0^{\frac{\pi}{2}} e^{2a\theta} \cos(\theta) d\theta \text{ (Integration by parts)} \\ &= 2\pi \sqrt{1 + a^2} \left[\frac{e^{2a\theta}}{4a^2 + 1} (2a\cos\theta + \sin\theta)\right]_0^{\frac{\pi}{2}} \\ &= \frac{2\pi \sqrt{1 + a^2}}{4a^2 + 1} (e^{\pi a} - 2a) \end{aligned}$$

Note that

$$\int e^{2a\theta} \cos(\theta) \, d\theta = \frac{\cos(\theta)}{2a} e^{2a\theta} + \frac{1}{2a} \int e^{2a\theta} \sin(\theta) \, d\theta$$

(Let $u = \cos(\theta)$, $dv = e^{2a\theta} d\theta \rightarrow du = -\sin(\theta)$, $v = \frac{1}{2a}e^{2a\theta}$) $\int e^{2a\theta} \sin(\theta) d\theta = \frac{\sin(\theta)}{2a}e^{2a\theta} - \frac{1}{2a}\int e^{2a\theta}\cos(\theta) d\theta$ (Let $u = \sin(\theta)$, $dv = e^{2a\theta} d\theta \rightarrow du = \cos(\theta)$, $v = \frac{1}{2a}e^{2a\theta}$) $\int e^{2a\theta}\cos(\theta) d\theta = \frac{e^{2a\theta}}{4a^2 + 1}(2a\cos\theta + \sin\theta)$

8. (8%) Determine whether $\int_0^1 \frac{\sin(x)}{x} dx$ is converge or diverge.

Ans:

$$\int_{0}^{1} \frac{\sin(x)}{x} dx = \int_{0}^{1} \frac{x - \frac{1}{3!}x^{3} + \frac{1}{5!}x^{5} - \cdots}{x} dx = \int_{0}^{1} 1 - \frac{1}{3!}x^{2} + \frac{1}{5!}x^{4} - \cdots dx$$
$$= \left[x - \frac{x^{3}}{3 \times 3!} + \frac{x^{5}}{5 \times 5!} - \cdots \right]_{0}^{1} = 1 - \frac{1}{3 \times 3!} + \frac{1}{5 \times 5!} \cdots$$
$$= \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1) \times (2n-1)!} \text{ is converge by the alternating series test, since}$$

$$\lim_{n \to \infty} \frac{1}{(2n-1) \times (2n-1)!} = 0 \text{ and } \frac{1}{(2n+1)(2n+1)!} < \frac{1}{(2n-1)(2n-1)!} \text{ for } n > 1$$